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AN ATTLMPTTO UNDERSTAND STUDENTS' UNDERSTANDING OF BASIC ALGEBRA

ABSTRACT

This paper reports the results obtained with a group of 24 I4-year-old students when

presented with a set of algebra tasks by the Leeds Modelling System, LMS. These some

etudents were given a comparable paper-and-pencil test and detailed interviews some '4

months later. The latter studies uncovered several kinds of student misunderstandings

that LMS had not detected. Some'students had profound misunderstandings of algebraic

notation: others used strategies such as Substituting numbers for variables until thef-
equation balanced. Additionally, it appears that the student errors 'fall into several

distinct classes: namely. manipulative, parsingclerical.and "random".

LMS and its rile database have been enhanced as the result of this experiment, and so

LMS is now able to diagnose the majority of the errors encountered in this experiment.

Finally, the paper gives. a process-orientated explanation for student errors, and

re-examines related work in cognitive modelling in the light of the types of student

errors reported in this experiment. Misgeneralisation is a mechanism suggested to explain

some of the mal-rules noted in this study.
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1. INTRODUCTION

The impetus for work, in Intelligent CAI has two major sources; firstly, the

practical aim of producing teaching systems which are truly adaptive to the needs of the

student and secondly the "theoretical" interest involved in formulating these activities

as algorithms. It has been argued by .Bartley and Sleemen 1073 that an intelligent

teaching system requires access to: knowledge of the task domain; a model of the

student's behaviour; a list of possible teaching operations; and means-ends guidance

rules which relate teaching decisions to conditions in the student model.

During the last decade a number of systems have been implemented which include semi

or all of these databases. In particular during the last 10 years a number of systems

have been implemented which attempt to provide 11,1111=1.1.1& learning environments intended

to facilitate learning-byftdoing. These systems include SOPHIE (Brown. Burton & de Kleer

1082). GUIDON (Clancey 1082), WEST (Burton & Brown 1982), WUMPUS (Goldstein '1002), and'

PSM-NMR (Sleeman & Handley 1082); such systems have been called Coaches or Problem

Solving Monitors. In this paper, we address a catlieuler aspect of the problem of

inferring a model from the student's behaviour on a sot of tasks, [1]. We shall outline

the results of a recent experiment with 24 14-year-old students who were considered. to be

of swage ability. The issue to be considered in this paper is whether the models

inferred by the.Leftds Modelling System. LMS, can be given a cognitive interpretation, and

whether it is possiole to say something about the nature of the etecesses used by a

student given the model inferred by LMS.

1.1 The Leeds Modelling System, LMS.

In common with BUGGY (Brown & Burton, 1970) US uses f generative mechanism to create

models from a sot of primitive components. Without a generative facility, the ability of

a system to model complex errorful behaviour is severely limited. However, the use of

such a mechanism also causes difficulties, sincq such an algorithm can readily lead to a

combinatoria' explosion. For example, if there are N primitive rules in a domain where

1. for a more detailed discussion of this, and related issues see the Introductory essay to
Tutorin4 5ystAlml, (Sleeman & Brown 1982).
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the rule-order is significant, then there are K factorial, NI. models to, be considered.

BUGGY and LMS are similar in that BUGGY uses a collection of primitive bugs from which to

generate models, while LMS uses mal-rules. incorrect rules, observed in the analysis 0
earlier protocols. On the other hand, whereas BUGGY uses heuristics to limit the site of

its model space, a major feature of the LAS work has been the formulation of the search to

focus each task-set on particular rule(s). [2]. As has been demonstrated (Sleeman i Smith

Mt. and more particularly by Sleeman 1253a) this technique drastically reduces the

number of models to be considered at each stage, [3]. lefore considering the results of

this experiment, we briefly review the prcduction system representation which has bean

used for student models and explain the main features of the production system interpreter

used to execute these models.

Figure la gives a set of Production Rules, used with LMS. which are sufficient to

solve linear algebraic equations of one variable. Figure lb gives a set of mal-rules for

this domain which have been observed in protocols analysed earlier. A task-set is a set

of 5-7 tasks chid; ftighlights. the use of one or more domain-rules; Figure 2 gives a

typical task for each of this domain's task-sets and the rules which each set focusses on.

Further, Figure 2 shows the exact format of tasks presented by !MS; this format has also

been used in all subsequent interactions with the students.

[Figures 1 and 2 about here].

In this work. a model is an pillared list of rules. Order is significant, as the

interpreter executes the action of the first rule in the model whose conditions are

satisfied by the state (i.e., the task or the partially solved task). In this way we are

able to capture precede= which is important in this subject domain. The match-execute

cycle continues until no further rules fire. figure is shows pairs of correct and "buggy"

models executing typical tasks. LMS infers a model for each task which the student works.

producing summary model(s) for each tLsk-set. If the student's behaviour is random or

conforms to a previously unencountered mat -rule then LAS returns a null model (see Sleeman

1982 for more details). LMS presents tasks to a student until its example bank is

2. EAemples of task-sets are given in Figure 2.,

3. Initially. we made the assumption that the domain was hierarchical and so we have referredto the stages as lama': thus modelling proceeds by first considering level 1. then 2, etc.

5
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exhausted or until the student opts to "retire".

The 1980 Experiment

In 1980 an experiment was run with a group of 15-year-old students and a lug close
agreement was achieved between LMS's diagnosis and those made by a group of investigators

who gave the students individual interviews on analogous teaks (Sleeman 1982). In one

important respect LMS and the investigators differed. The design of LMS was such that if

the student did not make an error with say XTOLHS when it was introduced, then LMS assumed

XTOLHS would be used successfully at all subsequent levels. This experiment showed that

this was not a valid assumption. For example, some students who were able to correctly

work tasks of the form:

30X4,X+ 9
had trouble on the following type of talk:

12 X 2 0 44 X +

where they appeared to forget to rhangn the sign of the X-term when the side is changed,

and thus we have seen 20 X 10 returned as an answer.

It was, in fact, easy to remove this assumption from LMS's code, but unfortunately

the modification led to an explosion in the number of models to be consW ad, and so a

reformulation of the algorithm was carried out (Sleeman 1983a).

As a result of this experiment, we believed that students' behaviour on algebra could

be largely explained in terms of manipulative mal-rules, namely mal-rules in which one of

the substeps is omitted.

AU QUIVIEW at EARLIER numma WCUIX in CDO/TIvE MELLIUG

BUGGY (Brown & Burton 1078) analysed the responses which students gave to

multi-column subtraction tasks. The system reported a diagnosis for each student in terms

of correct procedures, or procedbre3 which had some of their substeps replaced by

incorrect variants, called bugs,

6
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Young & O'Shea 1981 point out that although BUGGY produces models that behave

functionally as the students, these models are not very convincing as psychological

medals. Many of the bugs appear to be very similar (many are connected with borrowing

from zero) yet this relationship is not made clear. More particularly, Young & O'Shea

show that some of the BUGGY data can be analysed more simply in terms of certain

competences being amated from the :veal model.

Repair theory (Brown & VanLehn 1000) is a further attempt to provide a psychological

explanation for the same data, Mere Brown & VanLehn take a correct procedure for

performing subtraction and apply a deletion operator to the procedure. This perturbed

procedure is then used to solve tasks. When it encounters an impasse, such as a situation

where it is about to violate a precondition (e.g., attempting to take a number from 0), a

repair is applied to the perturbed procedure, and it attempts to continue solving the

task. This process also uses critics to throw out some repairs which are considered

impossible at a given impasse.

More recently VanLehn 1983a has suggested a variant of repair theory, which does not

delete ,.taps from procedures - as it is argued that the blocking, or inhibition, of the

deletion operator was unprincipled. Secondly this version overcomes the difficulty that

certain core procedures annnnt be generated easily by rule deletion. Instead, VanLehn has

suggested a series of core procedures, which correspond to the various stages of

nstruction (c.f., Sleeman & Smith leal). From this perspective an impasse occurs when

ihe student encounters a sub-task which he has not learnt, or has forgotten.

Both variants of repair theory explain what Brown and his coworkers have called bug

migration, namely that with the same type of task, the student may display different bugs

both during the same test-period and between different tests. Moreover, VanLehn 1901 has

analysed protocols in which it was possible to generate all the bugs in an observed

migration class by applying different repairs to a common (partially learnt) core

procedure. So VanLehn suggests consitent bugs can be explained by supposing the student

stores the "patch" and merely uses it with the next tank. The explanation for bug

migration is that the patch is apl, retained and than, one of the repairs is selected

randomly.
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The Illinois group (Davis, Jockusch & McKnight 1978) ha reported algebra students

overgeneralising from instances, using an "old" taper E .aad of a more recentWy

introduced one DO, and regressing under cognitive load. M41. 1982 hss further analysed

these students' performances and has suggested a numbar of high-level schema which explain

series of observed errors, These include her "extrapolation principle" which explains why

a student who has seen the legal transformation:

(A 8)/4C AAC8AC
would then write:

(A + 8),,C ay.AAC+OAC

She also discusses the confusion which seems to arise between the notations of arithmetic .

and algebra. For instance, she argues that as 3 3/4 is to be Interpreted as 3 + 3/4 it is

not unreasonable that the student should interpret the algebraic expression, 3X as 3 + XA

Di, [5].

4. + instead of '1, instead of Exponential.

5. Although this explanation wwild explain 10.me of nur observations, students A017 and A1118 inthe Leeds study gave an alternative and more comprehensive explanation for their actions, seeSection 5.1.2a.

0. Similarly, our earlier work provided an additional data point for the 1981 experiment. Asa result of our 198(1 experiment. see Section 1.1, we believed that students' behaviour onalnebrA could be largely explained id terms of "manipulative" mal-rules (where a manipulativema1-rulo is a variant of a correct rule ana has one substep replaced by en inanpropriate orincorrect stop, see Sectio.. 5.1.1 for further discussion.)

BEST SCOPY



3. THE 1081 EXPERIMENT Imo LMS

The 1081 experiment was carried out with the tatileg modeller. 1.1.1S-II, [7]. but with

the same data-base of rules and tasks as used in the 1080 experiment. This group of .24

students. average age ' years 3 months, were judged to be of average ability at

mathematics; however the results were duraatiaelly different from the eaulier group's.

[8]. Indeed many of their difficulties were not diagnosed by LMS-11 and had to be

analysed by the investigator. This analysis was made very difficult because it had been

assumed that students would at most make one or .ao minor manipulative errors, co..
changing side and not sign, and so LMS had been designed to allow the student to input his

or her final answer. bed as many intermediary steps as he chose. In Figure 3 we give

sample summaries produced by LMS-II for students' online interaction, together with the

mat-rules which the investia= suggested were appropriate for each task-set. in Figure

4, we summarise the complete set of new mal-rules which the investigator considered

explained the students' behaviour with LMS-II.

Note that by stating that a protocol can be explained by a mat -rule, say, of the form

id X 1.> M x

(Figure 3a). we do agi wish to imply that given a problem of the type

3 X 4 X 5

that the student would produce the response:

3 + X + 4 X b 'A

Indeed, we have seen several students write

X+ X 5 - 3 - 4

and when asked to provide intermediary steps they have said categorically that there were
none as the above was done in "one step". Nevertheless we are happy to accept that both

forms are explained by the mat -rule; the first form however requires that several

additional rules are executed in order to get it into the sta.o given by the "second"

7. Revised to remove the assumption that if an error is not made with a rule at the stage it isfirst introduced, that the student will use the rule correctly on all subsequent occasions, seeSection 1.1.

8. Most of these students had been introduced to algebra several yc..rs earlier in their middleschools; further, the high school had retaught algebra virtually from the beginning - in theyear before the experiment took place.

9
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student, (It should be noted that the mat -rules given in figures 3:1- and 3e are more

comprehensive and carry out several housekeeping steps. The differences between basic and

comprehensive mel -rules ALA significant when ono tries to perform remedial instruction. as

it is important to ensure that the grain of the instruction.matches the student's.)

[figures 3 and 4 about here]

As a result of analysing those summaries, a number of questions were raised:

-What is the crucial difference between the task-sets which a particular student is

and Is not able to correctly solve?

- Does the student's.perception of algebraic tasks vary from one task-type to

another?,

Unfortunately, as the school vacation intervened. it was not possible to meet with the

students again until September (1981). Oecanse of the time that had elapsed, the students were

given a paper-and-pencil test which covered comparable tasks to those used by LMS. These teats

were analysed in detail by the investigator, and as a result of this certain students were

given detailed diagnostic interviews. The next sections give more details of these stages.

LI Ito Eaulainkac PAD-Or-and-Pencil LILL

From a comparative review of the May and September data. see Sleeman 1983c for the

details, we concluded:

1. The performance was generally considerably better in September than in May. (Hate ELA

additional teaching in Algebra had been given, however the students had presumably

done some self-study in preparation for their Juno examinations.)

2. A considerable number of tasks were nal solved on the written test (whereas LMS'

insisted the student gave a 'sponse to each question).

3. Some students who appeared to have "wild" rules on particular tasks in May, seemed to

solve this type of task correctly in September, e.g., ABS.

10
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4. Some students whose behaviour had been "random" or "wild" in May had now settled to

use malrules consistently, e.g., student AB18.

5. One studenWA57, gave multiple values in an equation where X occurred more than once.

6. Many of the students made the common precedence error, namely given a task of the

form:

2+ 3 X 11 they return 6 A 11.

As a result of this comparison it was decided to interview all those who appeared on the

written test still to hive major difficulties, but not to interview those who hod gnly common

"precedence" errors, or those who had had major difficulties which appeared to have "cleared
up".

Ike In lealeite

The interviews proved to be remarkably revealing as the students without exception wore

extremely articulate. These dialogues were recorded; Figures 06 have been reconstructed from

the tapes and the worksheets.

The investigator presented the student with a series of tasks and asked him, or her, to

work each one explaining as he went aloEg exactly what he was doing. In some cases the

investigator asked the student to tell him which of two alternative forms were correct anti

frequently asked the student to explain why. The tasks presented were different for each

student, and were based on the difficulties noted in the individual's September test. The

interviewer thus started each session with 4 list of task-types to be explored, but often

generated 1:articular tasks as a result of answers given to the planned tasks.

The following is a summary of the main features noted during the interviews:

1. Some students "searched" for solutions (i.e., tried different values for X). (Section

3.2.1).

11
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2. One student computed a separate value for gad' X given in the equation. (Section

3.2.2).

3. One student maintained that there were a number of quite aililhat ways of solving an

equation; even when it is demonstrated that each approach led to different answers.

( Section 3.2.3).

4. Some students have "hard"., consistent, mat- rules, ( Section 3.2.4).

5. Some students have the correct rules and can explain why it is not permiIsiblo to

perform the illegal transformation, including the illegal transformations that the

student appeared to use in May. (Section 3.2.6).

Each of these points is discussed in the following sub-sections.

3.2.1 Soughing Lot Solutions

Searching for a solution appears to be a JEALS common way of solving equations with .

students beginning algebra, and presumably arises because the initial equations presented could

be solved in this way. When given an equation of the form:

3 X 2 14

such students substitute X1, then X2, then X3.... until the equation balances. (See

Sleoman 1903c for further Mails of student Aall's protocol), (9].

Further, student A1311 solved tasks of the form:

3 X 2

as X -1. eXplainifig she IttAle&Cted 3 from both sides.

It is indeed intriguing to watch students changing their approach when solving tasks of

thii latter form depending on whether the task is solvable by "search". Students do not appear

9. Indeed, in a more recent test with 100 13-year-olds, it appears that about 95% of them use
this approach. Intelligent Tutoring Systems Ana teach rs should suspect that a student is
using a naive algorithm if he appears to be unable to solve tasks where the variable is a
negative integer, large-integer or non-integnr. The teacher should be concerned because the
naive algorithr is only applicable to a sub-set of algebraic equations. and hence should be
deemed a sighificant weakness, and one to be remedied. It seems clear that the use of
simplistic tasks leads to a naive algorithm which causes major conceptual difficulties on more
advanced tasks.

12
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to believe that all equations of the same form should bo solved in the same way. (Clearly this

point should have buen discussed in an interview with thpso students.) Such students are often

unable to solve Correctly equations which contain multiple Xs; they attempt to WU values
for all the Xs in the equation, see the next subsection.

3.2.2 KAlLiele MA10.1 Lae A

In this subsection, we report a student who has a very strange, but novertheloss very

cmuiStani algorithm, for solving tasks involving 2 Xs. When student A87 was originally

working at the terminal, she was heard -to mutter:

"If this X was 2, thin it would work if this second X was 4".

Not only was this student consistent in both the paper-and-pencil exercise and in the

interview, she was able to explain what she was doing. Given the task:

. 3 X + 2 X 12

She gave the following explanation;

"What I a is take the 3 and I make the first nal to 2, so I write:

3 a

When asked by the interviewer why the "first" X is equal to 2, she explains that it's the next

number along, and then added "I think this is the wrong thing to do, but that's what I do",

She then continued N... and then I write down the + 2 making

3 2 + 2

I then work this out, this is equal to 8 and so the Second X is

12 8, that is 4".

She then completed the solution and gave the 2 ualues for X, and so the final state of her

weeksheet was:

3 2 + 2 4 12

X 2

X "4

13
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She used this algorithm consistently on 9 tasks. see Sleeman 1163c, [10]..

3.2.3 A1.LataliK1 Algulams

Although student A817 was able to salve several task-typos correctly, he was easily

"distracted" and quite unable to toll the investigator why the investigator's "alternatives"

mire illegal. On Some tasks the student suggested 3. cal illegal solutions, and again was

really unable to distinguish betwoen them. (See Figure 5 for details). On the other hand,

this student did give as an aside a rationale for his "method", namely "collecting all the Xs

to Ahe LHS and all the numbers to the RHS", which will be discussed in Section 5,1.2a.

[Figure 5 about hare]

3.2.4 liatataaasblul

Many of the students used consistent mal-rules. Just over half of the 24 students we saw

mis-handled precedence in equations of the form:

2 + 3 X 9

Part of a protocol for one such student is given in Figure 0.1, (11]. Figure 6.11 is part of

the protocol produced by the student discussed in Section 3.2.3, where he consistently applies

10. Initially, we had supposed this to be a very idiosyncratic algorithm, but subsequentlynoted that a variant was used extensively by 13-year-olds. For example we have seen:
3 X 4 X 3

"solved" as:
381 + 480 3, making X 1 rqd X O.

Similarly,

3 X 4 X 98
has been "solved" as:

3922 + 408 60 + 32 98.

Moreover. in "complicated" cases the two sides often are not "balanced". Thus we haveseen

3 X + 4 X 100
"solved" s:

3630 + 42 100
and when asked the student explained that "this one did not work out exactly".

Note that these students frequently solve tasks of the form:
3 X 4 10

by "search".

11. Recently we have discovered that 90% of a sample of 13-year-olds had precedence
difficulties with arithmatiq expressions involving " + " and "*" operators.

14
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a further intriguing transformation to a complete sot of tasks. In order to understand this

protocol fully we have suggested that a numAii2Atilla step takes place between stages 1 and 2

of say protocol a). That is, we suggest that when the student applies the mal-rule to the

original task, this results in an "unusual" form which the student then "normalizes" before

continuing to process the rest of the task.. (See Sleeman 1983c for a lengthier discussion of

"normalization").

[Figure 8 about here]

Student A818, Figure 8.111, is remarkably consistent with his mal-rules over a whole range

of task-types. Note the application of his algorithm to task c) which involves 3 X-terms. (To

give him justice, he realises that he had got tasks d) - g) wrong as he noticed that the

equations did not balance when he substituted his answers back in). Further, having worked

task h), he noticed that when he moved the 4 across to the right hand side, he changed the

sign. So he suggested that when he moved the X (associated with 2 X) to the LHS, he should

also change its sign. He said:

"X - X is 0, and so the LHS became 0 and the RHS did ant"

and so realized that this proposed solution was impossible. However, for good measure ho also

worked task i) with the "revised" algorithm.

In the course of our discussion, this student also gave the basis for his "algorithm"

which is discussed in more detail in Section 5.1.2a.

3.2.5 naked Salle

In September student A05 worked correctly tasks which she had got z.cuudiatuLtal wrong in

May, namely task-sets 7 and 8. For task-set 8 she appeared to use kral-rule;

M.40 XNeX+PaoX+XEM+Np.
Moreover, when presented with a fallacious alternative during the September interview, she was

able to spot it and to say w114 it was wrong. For example, "not able to add a number to an X

term". "not able to separate a number from an X term", etc. (sea Sleeman 1983c for more

details). In May. this student showed a lack of understanding of basic algebraic notation

which appeared to be remedied by September. To see whether this was the case the investigator

also presented tasks from sets 12 and 13 of Figure 2, i.e., tasks of the forms

BEST COPY
15
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NNX+130X', and NXN*Ps<Qa+11).

All of which she worked correctly and was able to verbalise the stages she went through. An

equation which contained an "unusual" variable. AA, was also presented and again this was

worked correctly. Similarly several other students showed substantial "progress", and again

this was associated with the ability to mullAlA what they were doing.

4. SUBSEQUENT UPGRADE of INS and its DATABASE

The set of rules and mel -rules used in the 1041 experiment has subsequently been enhanced

to include the additional manipulative- and parsing- mel -rules confirmed by the student

interviews. E12]. Additionally. the code of INS has been extended to deal with mal-rules which
have a somewhat different character from manipulative rules. The extended LMS with the

enhanced database is able to diagnose the majority of the errors' encountered both in the

on-line sessions carried out in May 1981 (see Figure 3) and in the interviews (see Figures 5&0)

Sleeman 1983c.

5. COGNITIVE MODELLING and an INTERPRETATION of the RESULTS of the 1981 EXPERIMENT.

There is a steadily growing body of data about how school and college students solve

algebra tasks. Paige & Simon 1980, Lewis 1900, Davis, Jockusch 5 McKnight 1978. Kuechemann

1981. Sleeman 1982 and Sleeman 1983c. The major thrust of this paper is the analysis of the

experimental results reported here in terms of related work in cognitive modelling; Section 2

gives a summary of this earlier work.

Lartinant ilkuttation4 LLam this ExPerlment

I. Students appear to regress under cognitive load, she Sleeman 1983b for details.

12. Some of the mal-rules noted in Figure 4 were not seen in the interviews. I now believethese were an artifact of the first version of LMS which Lorc.efl ;.he student to give a responseto each question. OS has AOw been modified so that the student can give up on any task.
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2. There appears to be a number of.clearly
identifiable 14011 of errors. (Section 6.1).

3. Students use a number of alternative "methods" to soli' tasks' of the same set.

(Section 6.2).

ClAstiLigatut a =arm! Iltateat. 'macs

We propose a classification of students' errors observed in this experiment, namely,

manipulative, parsing. *clerical and "random". Pattie/01y, this classification is of

considerable importance as it enables one to give aumgittialg remedial instruction for the

several types of error. In case of "manipulative" mal-rules it would appear that the student

basically "knows" the rule, but due to cognitive overload or inattention, is omitting

substep(s). The Parsing errors appear to arise from a profound misunderstanding of algebraic

notation, and so have to be remediated vet->t differently. Additionally, in this section we

suggest mechanisms for several of these error-types.

ILL1 dnninulati s EC.LCILI

We define a manipulative mal-rule to bm a variant on a correct rule which has one

sub-stage either omitted or replaced by an inappropriate or incorrect operation, c.f., Young &

O'Shea 1961. For example, WORMS is a mal-rule which captures the movement of a number to the

other side of An equation where the student omits to au= the sign of the number. We suggest

that all the mal-rules reported in Figure lb and those numbered 7-9 in Figure 4 fall within

this category. Also in Sub-section 6.1.1b we briefly discuss the (apparently) related

phenomena of confusion of operands.

BEST COPY
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Al A AthAmA Lac amicaiinc malamIAIALA

In.Figure 4 we report 3 new (manipulative) mal-rules, variants of SOLVE, SIMPLIFY and BRAS

respectively. 0131, which can be explained by a deletion mechanism, as can the "original"

mal-rules given in Figure %b. Note that this schema would ALSO generate many mal-rules which

wk. have not yet observed. In the next paragraph we suggest why some of the possible mal-rules

. are not observed.

A yadan. SOLYE. The student realizes he has a task in which the SOLVE rule should be

activated and forgets to apply one.of the operations, namely dividing by M. SOLVE has *throe

principal actions: noting down N. the divide symbol and M. and so this mat -rule could be said

to be omitting some of the principal steps. it appears that students have an idea about the

acceptable FORM of answers and so givep:

M X N, they do NOT produce X /M or X N/.

A aciAal ap SIMPLIFY. Examples of the two rules given here, which have occurred reasonably

frequently are:

X 6/4 ea X 3/4

X 6/4 ea X 6/2

Again we argue that the above observations can ba explained If we assume that this rule

has several principal steps including calculate the common factor, divide the "top" by the

common factor, anc ;Jivide the *bottom" by the common factor. Each of these nil -rules

corresponds to one of the latter steps being omitted.

A luda/ on Aga. We have seen the task:

6 X 4 <2 X 3> a> G X = 4 X 12

BRA2 is a more complex rule with several steps and so one might expect to find a

13. The variant on SOLVE reported in Figure 4 is:
M X N ea XeN

Two variants on SIMPLIFY reported in Figure 4 are:
M X N e) X (N/F)/M
M X N ea X N/(M/F)

where F is a factor of M and N.

The variant on BRA2 reported in Figure 4 is:
14,01 X P> M X + NIP

18
BEST COPY



Page 15

correspondingly larger number of mal-rules. This is indeed true. This "new" mat -rule also

conforms to the pattern noted above, as it can also be explained by the omission of one

sub-action.

al COALU1195 at galtanAl.

We have noted errors of the following form:.

5 X 12 -.> X 2 2/12

Owe clearly one operand is confused for another. Norman 1981 explains such slips by saying

that they are a conSequance of a noisy processor.

al NLAift aad maalaulaliza

There is a very real sense in which detailed analyses cf manipulative mal-rules allows one to

infer the substeps processed by students, and this in turn allows one to predict the set of

mal-rules that will be encountered in a domain. (Bearing in mind the idea of acceptable form

outlined above). Further. one might argue that the representation of the tasks should be at

this "lower," levels the patification for the representation chosen (see Figures labb) is that

this appears to be more consistent with the collected verbal and written protocols for students

solving these tasks.

the schema discussed above for generating manipulative mal-rules by omitting, or

modifying, one substep is thus consistent with Young and O'Shea's modelling of subtraction.

Further, we believe that contusion of operands can be seen as a variant of this same mechanism.

Incorrecl, gaatammialiar. at =a /ask at Eau" Lana.

Wa have categorized the first 6 sets of Mal-Rules in Figure 4 as ones which summarize what

happens when a student "mis-sees", or mis-parses, an algebraic equation. Wo assert that many

of the students whom we interviewed carried out steps of the computations in ways which would

not fall within the definition given earlier for manipulative mal-rules. lalow, we give

typical protocols for two students working the task VX 3'X + 12:

6X 3'X 12

9eX 12

X 12/9

X 2 4/3

6'X 3X + 12

X + X 12 3 - 8

2X 9

X 0'2

BEST COPY
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When we pressed the "first" student for en explanation of how the original equation was

transformed into the second, i.e., BX 12, thestAdent talked about moving the 3+X term

across to the left hand side. Thus the interviewer conc/ludid the student was using a variant

of the correct rule, namely c manipulative mat -rule, ,when the "second" student was pressed he

simply asserted that the change from the original equation to the second form "was all done in

one step ". Hence the interviewer conGluded it was a very different ina of mat -rule involved

and aat a simple variant on the correct rule. Thus the interviews provided 1111111ill

additional information as, of course, the second student's protocol could be explained by the

use of MXTOLHS and the mel-rule:

M X ), M + X

which some people might wish to argue constitutes a wiping/a mel -rule (replacing the

operator by the operator). This investigator maintains that such a transformation reveals a

profound misunderstanding of algebraic notation and so should be considered as a =slag
mal-rule.

Additional "evidence" for the distinctive between manipulative and parsing mat -rules comes

from an understanding of the likely representation of the equation for the two groups of

students. Figure 7a gives a correct parse tree for the equation discussed above. Highly

probable inadequate representations for the equation, which are consistent with observed

mal-rules. are the linear algebraic string, i.e., the usual written form of an algebraic

equation, and the not-so-deeply nested tree given in Figure 7b. These latter representations

suggest that the student has failed to appreciate the semantics of algebraic expressions - and

sees the solution of algebraic equations as a symbol manipulating task. We collected

considerable evidence to support this view earlier. Sleeman 1982. and in the 1981 experiment

(see Figure 8.11a), where a student transformed:

2 X + 4 X 12 into X X 12 - 2 - 4.

al irhama in& 411121.41112: Parsiu :pal-rulal.

In the course of the interview student AB18 explained that he was carrying out the

teacher-given algorithm of: "Collecting Ail the Xs on the left hand side and collecting all

the numbers on the right hand side", and added that he was not really sure what to do about the

"extra multiply signs". Student AB17 gave a similar explanation for his actions. This gives

us a schema for generating mat- rules. In this section we explore this topic further.

20
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For example given the task-type:

H EIX4.N,X P

This scheme gives the following "action sides" for mal-rules:

X +XP-14- N

X .11P+M. N
where in the second case the X coefficients are treated "specially", i.e., the coefficients of

the Xs were taken across to the RHS of the equation but the signs were NOT changed.

Additionally, there is the form given by student Mill. and quoted in Figure 6.11, namely:

XXP-M- N
which he. went on to "normalize" (see Section 1.2.4) to:

X XP-M- N
and its "complementary" form:

Similarly. Riven the task-type:

MXNX+P
this schema creates the following forms:

X N P

X filial)* M

X +Xs' M

X +XNP M
X -X11.0-

X -X11.124. M

for example on task h). student AB18 suggested the use of both the third and the fifth

forms (see Figure 0.111).

As argued above. unlike the manipulative mal-rules. the naming mat -rules gannet be

eAplainwd by omitting a component. Neither does it seem that they can be explain.d by

performing a repair to a core procedure. union one is prepared to broaden one's view of a

repair to include the schema which were observed with students A817 and Ma, and the

'extrapolation" procedure noted by Ma'z. [14].

14. Further, I suggest both these schema could have been created by the misgeneralization
mechanism discussed in Section 5.2.

21
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8....1.61 CUL/gal =GU.

Analysing some of the protocols, one is happy with the explanation that some "slips" occur.
For example:

10 X 25 lea X 25/18

2 X 8'5 > X 18

In the first case the student has probably seen the "0" as an "8", In the second he has

probably made an arithmetic error, [15]. DCBUGGY (Burton 1982) considers an answer tn be a

"number-oond slip" if the answer is within 2 of the cor.ect one. The second slip given above

could be explained if we had an analogous a+gorithm for the evaluation of multiplicative

expressions. However, the first slip, a "visual" one, clearly could not be. So we suspect
that to account for the variety of "slips" encountered in this domain a more sophisticated

approach, c.f., that advocated by Norman 1981 would be necessary. However, wl have not thought

this worth investigating as. clericel errors have so far been relatively infrequent.

114 LIA11"/Uflualalaast Luau.

Many of the mistakes not explained so far may be due to the consistent use of mat -rules which

so far we have gal identified, [18].

Ullag &Maas at 14 Migration

Repair theory gives a neat explanation for the observed phenomena of bug migration in the

domain of multi-column arithmetic, Brown d VanLohn 1980, namely that the student will use a

related family of mat - riles, and possibly the correct rule, during a single session with a

particular task-set.

15. Given the earlier definition of manipulative mat - rules, it Anpeari that the errorsreported above have a different nature. At the very least it they are instances ofmanipulative mal-rulos, they are nD1 Algebraic manipulative mal-rules.

1f. As this is clearly a very demanding task, there is a need to implement some computationaldevice to assist the investigator. A preliminary system has been implemented which has alreadygiven several "explanations" not spotted ty the investigator.

22
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There seems to be an alternative explanation which should also be considered. Although a

task-set may have been designed to highlight one particular feature, the student may spot

completely different feature(%) and these may dominate his solution, [17]. Repair theory

accounts for some bugs by hypothesising that the student had not encountered the. appropriate

teaching necessary to perform the task. Suppose we make the converse assumption, that the

appropriate teaching had been carried out, and further suppose !NAt some students gain

competence In this domain not by being Laid the rules but rather by Warring rules for

themselves. by noting the transformations which are applied to tasks by the teacher and in

texts. [18], [12]. It seems reasonable that the student's inference procedure should be guided

by his previous knowledge of the domain, in this case the number system. and that the student
.

normally infers several rules which are consistent with the example, and not just the correct

rule. Indeed due to some missing knowledge the correct rule may not be inferred. (And so the

fact that the student mut u.-s the correct method along with several buggy methods is ma
evidence that he has HOT encountered the material before.) We shall refer to this process as

Knowledge Directed Inference of rules, or misgoneralization for short.

Suppose, the student saw the following stages in an algebraic simplification:

Then he might infer

3 X . 6 ON>
It 6/3

X RHS number/LHS number OR X LARGER number/SMALLER number

Further, we suggest that schema such as that articulated by students A1117 and ABla could

have been inferred by the process of mss-generali:ation.

17. Earlier Sleeman and Brown 1982 have argued: " Perhaps more immediately, it suggeststhat a Coach must pay attention to the sequence of worked examples, and encountered task
states, from which the student is apt to abstract (invent) functional invariances. Thissuggesti that no matter how carefully an instructional designer plans a sequence of examples,
he can .over know all xhe intermediate'steps and abstracted structures that a student willgenerate while solving an exercise. Indeed. the student may well produce illegal steps in his
zolution and from these invent illegal (algebraic) "principles". Implementing a system withthis level of sophistication still presents a major challenge to the ITS/Cognitive Science
community... "

18. Note I am 1121 claiming that there is a tiagle mechanism. Matz has provided anothermechanism namely, that some students use an "extrapolation principle" to extend a method they
know wools in one context to further analogous contexts.

19. InJeeendently. VanLohn 1083b has come to a similar conclusion. the Sierra system describedin his lhiisis relies heavily on inference.

23
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We will surmise how a student would use such a rule-set or schema. We will suppose that

the abler students actively experiment with different "methods", and use their own earlier

examples, examples worked by the teacher or in the text to provide discriminatory feedback, .

From our experiment with 14-year-old students we have direct evidence that some students, e.g.,

students A617 and A610, are aware of having a range of applicable rules and being unsure of

when to select a particular method. That study did not provide any insights into the

rule-selection processes used by those students. We could suggest the common default, i.e..

that the process is random. However, studies in cognitive modelling have already discredited

this explanation many times, so we will %postulate that the process is deterministic but

currently "undetermined". It is further suggested that tasks which show a rule is inadequate

will weaken belief in the rule, but once a (mat) -rule is created it may not be completely

eliminated, particularly if the "counter-examples" are not presented to the student for some

period. Thus given this view point, the phenomena of bug-migration occurs because the student

has inferred a whole range of rules and selects a rule using a "black-box" process. Given a

further task, he again chooses a method and hence selects the,srme or an alternative algorithm,

influenced partly by the relative strengths of the rules. That is, if the relative weights are

comparable it is more likely that the student will select a different method for each task. If

one weight dominates then it is likely that the corresponding method will be selected

frequently. Further, if only one (mat) rule is generated by the induction process then this

approach predicts that the student will consistently use that rule.

We suggest that many of the bugs encountered in the subtraction domain can be accounted

for by this (inference) mechanism. For instance the Smallerfrom-Larger bug where the smaller

number is subtracted from the larger indenangeni of whether the larger number is on top or the

bottom row seems one such example, Brown 5 Ourtoe 1978 and Young & O'Shea 1081. Brown &

VanLehn 1980 report that because borrowing was introduced, with one gre.lp of students, using

only 2-column tasks these students inferred that whenever borrowing was involved they should

borrow from the loft-most column, their "Always-Borrow-Left" bug. (So it appears important to

ensure that the example set includes some examples to counter previously experienced mal-rules.

Indeed it seems as if task-sets can be damaging if they are too preprocessed and contain too

little "intellectual ruffego "; Michoner 1976 makes a similar argument.) Additionally, Ginsburg

1971, quotes several instances of young children inferring the name "three-ty" for 30, given

the names for "40", '50", "60" and "3". So given the wealth of experimental evidence this

24
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alternative explanation should be given serious consideration.

further. I have two philosophical reservations about repair theory'. Firstly, by some

mechanism not articulated all students acquire a common set of impasses, and moreover they

.consistently observe these. Secondly and more significantly, repair theory. which sets out,. to

explain majot individual differences at the task level, itself proposes a specific mechanism

LAMM= to all students. £20]. On the other hand, mis-goneralimation predicts that the

individual's initial knowledge profoundly Influences the knowledge which is subsequently

inferred, and captures the sense in which learners are active theory builders trying to find

petterns,, making sense out of observations, forming hypotheses.. and testing them out.
I

U fairauilani

Firstly, we have two explanations fOr some of the misunderstandings noted with algebraic

notation. Namely, that given by Mats 1982 and that given by wiudents, ABII and A618, see

Section 6.1.2. Certainly, Mats's explanation explains Loam of our observations, but not all as

in some cases the coefficients are treated "specially", and their sign is nol changed when they

are moved to the RHS. For example, we have observed;

3 X + 4.12 is> X 4, 12 + 3 4

i.e., the student changes the sign of the 4 but flai the 3.

Secondly. there are two hypotheses which explain bug-migration; the one given by repair

theory and the one put forward here, namely mis-generalization. Of course it is possible that

each may be applicable in different situations.

Thirdly, several "algorithms" have been presented for creating student models. 1 believe

these are suggestive about the students' organization of this knowledge and about the processes

used when students solve (those) tasks. Repair theory suggests patches are made to incomplete

core-procedures. Young and O'Shea suggust that it is adequate to take a correct procedure and

merely delete substeps. The data for the algebra manipulative mat -rules can be, adequately

explained by either. However, Young and O'Shea's approach seems inadquate to explain the

20. Indeed. I am concerned that many theories of (child) development do net accept thepossibility of there being significant individual differences in development, but merely in theindividual's LAU of progress and the level of his final maturation.
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parsing mal-rules. Indeed, we have to extend the revised repair theory before the results

reported' hers can be accommodated. (An analogous extension is needed to accommodate the

Davis/Matz results). This paper claims that there are two. very different types of malrules at

large with algebra students - namely manipulative and pareina mal-rules. The existence of this

second category of algebra errors, and many of the mal-rules collected in other areas, appear

to be best explained br a further mechanism, namely misgenoralixation, [21].

.04

Fourthly, there is evidence that once inferred, rules are -additionally applied

incorrectly. I suggest that the mechanism(s) described by repair theory, Young & O'Shea, and

Sectior 6.1.1 are appropriate,for the apaigIliaa stage, wheteas misganerali_ation is a more

plausible mechanism to explain rule

11

21. The abo4e comparisons of explanations (or thoories) are important in that they remind usof the essentially pragmatic nature of Cognitive Science.
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Lima
a) RULES for the ALGEORA domain (slightly stylized).

RULE NAME CONDITION.

SOLVE
SIMPLIFY
ADDSUB
MULT
XADOSUB
NTORNS
REARRANGE
XTOLHS
BRAS
BRA2

(X M/N)
(M X N)
(X N/N)
(ihs N +I- N rhs)
(lhs N N rhs)
(lhs SPX +I- rhs)
(lhs +I M rhs)

+I-M .1- NX rhs)
(lhs +I- rhs)
(lhs v N > rhs)
(lhs MactiX +I-P> rhs)

ACTION

((M N)) or ((q)
(X Al/M) or (INFINITY)
(X M' /N')
(lhs [evaluated] rhs)
(lhs revaluated] rhs)
(lhs (P4 +I- N) X rhs)
(lhs rhs -I+ M)
(lhs CI- NX +I- M rhs)
(lhs -I. MX rhs)
(lhs N rhs)
(lhs +I- MP rhs)

Page 28

Where M, N and P are integers, lhs & rhs are general patterns (which may be null), +I-
means either or may occur, and < and > represent standard algebrait brackets.
For @stamp le, the MULT rule changes the state (3 X 5 + 3 4) to (3 X 6 + 12.) where
the variables in the pattern, lhs. rhs, M and N, are bound to (3 X 6 +), null, 3 and 4
respectively.
See Figure lc for a complete trace of this and several other tasks.

0) Inme, MAL-RULES LIE 112..0.0011b1

RULE NAME CONDITIO4

MSOLVE
MNTORHS
M2NTORHS
M3NTORMS
MXTOLHS
MIBRA4
M2BRA2

(MX N)
(lhs +I- M rhs)
(Thai +I- N lhs2 rhs)
(lhs1 +1- M lhs2 rhs)
(lhs +I- MX rhs)
(lhs M 411X +I- Pw rhs)
(lhs 144 N* +I- P> rhs)

Using the same conventions as above.

ACTION

(X M/N) or (INFINITY)
(lhs rhs +I- M)
(Thal +1- lhs2 rhs -1+ M)
(1h$1 +1- lhs2 rhs +1- N)
(lhs +1- Mi rhs)
Ohs MNX +I- P rhs)
(lhs MNi +1- M +1- P rhs)

C) EAiLA at wall nag :hum: Wall ausalia2 l LAAJLs .

i) shows the correct model (MULT ADOSUB SOLVE FIN2)
and the "buggy" model

(ADDSUB MULT SOLVE FINE) solving 3 X 5 + 3 4.

[The first lino gives the initial state and all subsequent lines give
the rule which tires and the resulting state.]

3 X 6 + 3 4 3 X I 6 + 3 4
MULT 3 X 5 12 AODSUO 3 X 8 4
ANSU8 3 X 17 MULT 3 X 32
SOLVE X 17/3 SOLVE X 32/3
FIN2 (11 3) FIN2 (32 3)
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11) shows the correct model (NTORHS ADDSUS SOLVE FIH2)
and the "buggy" model

(MNTORHS AODSU8 SOLVE FINZ) solving 4 X + 8 19.

4 4, X 6 19 4 X + 6 12
NTORHS 4 X 19 8 MNIORHS 4 X 19 + 8
ADDSUB 4 X 13 ADDSUB 4 X 26
SOLVE X 13/4 S(404 X 25/4
FIN2 (13 4) FIN2 (26 4)

L4411LA Z

Task-set

2

3
4

5

8

7

/Was tasks tat dna t.

Rules focussed On

SOLVE -.:,-

ADDSUB
MULT
XADDSUB
NTORHS
REARRANGE

sat aad mbia talacil au hang faamasag as

Typical Task

6 X 7

3 ' X 5 + 3
5 X 2 4, 2

2 X + 3 10
2 X + 4 18
4 + 2 X m 18

8 XTOLNS 4011,12 4,X+ 3
9 BRAT 2 r. .6 43 + 1>
10 BRA2 6 X 4 4 X + 3>
1 1 ADOSUB&MULT 2 4, X 2 + 4 6
12 ADOSUB&XADOSUB 2 + 3 X + 4 X 16
13 ADOSUB&BRAZ 15 X 2 + 4 42 X + 0>
14 MULTUADOSUB , 204 X+ 2 X 12
15 MULT&BRA2 14 X 2 3 42 X + 0>
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Licata a

.Protocols from which new mat rules wore inferred. (Note the teacher specified the way inwhich the Pcoefficisnt should be represented. UHL-Lao that soma at Ina protocols Atgaat caat(ttlatt the inkatliaalat hat aixta tha maluAlas which ILLEMILUAI 4.1111alullaatIs haulm= ma Lha maJatit$ atlha tatlia).

Task-set 5
Task is (2 X + 4 X 12) Student's solution was (1 X 3)
Task is (2 X + 3 X 10) Student's solution was (2 X 10 - 2 3)
Task is (3 X + 2 X 11) Student's solution was (1 X * 6 // 2)
Task is (2 X + 8 X 10) Student's solution was (1 X 1)
Task is (3 X 4 A 9) Student's solution was (1 X 1)
Task is (2 X 4 X 3) Student's solution was (1 X -3 // 2) .

Task is (4 X + 2 X 4) Student's solution was (8 X 4)

Figure lg. Protocol apparently showing I'S ')I low N + X.(student A1117).

Task-set 6
Task is (2 X 4 16) Student's solution was (1 X 8 // 3)
Task is (2 X 3 Si Student's solution was (1 X 9 /1 6)
Task is ( X.- 4 8) Student's solution was (1 X -8)
Task is (2 A 5 10) Student's solution was (1 X 10 // 7)
Task is (6 X + 4 6) Student's solution was (1 X 3 // 5)
Task is (5 X + 2 4) Student's solution was (1 X 5 // 7)

Lir 3.. Protocol apparently shOwing M X + N (M + N) X (student A820).

Taskset 7
Task is (4
Task is (2
Task is (3
Task is (4
Task is (4
Task is (5

2 X 18) Student's solution was (1 X 8)
4 X 14) Student's solution was (1 X 6)

,

5 X 11) Student's solution was (1 X -4)
6 X 11) Student's solution was (1 X -13)

+ 5 X 6) Student's solution was (1 X -14)
+ 2 X 8) Student's solution was (1 X -2)

Lilutit al. Protocol apparently showing N + N X > M N + X (student AB3).

Task-set 8
Task is (4 X 2 X + 6) Student's solution was (1 X 8)
Task is (3 X 2 X + 6) Student's solution was (1 X 5)
Task is (3 X -2 X + 7) Student's solution was (1 X 4)
Task is (4 X 2 X + 3) Student's solution was (1 X 0 // 2)
Task is (4 X -2 X + 8) Student's solution was (1 X 5)
Task is (6 X 2 c + 3) Student's solution was (1 X 11 /I 2)

Lula' 3g. Protocol apparently showing MX NX +112.X+XM+NP(student A111).

Task-set 7
Task is (4 + 2 X 18) Student's solution was (1 X 2)
Task is (2 + 4 X 14) Student's solution was (1 X 4 // 2)
Task is (3 5 X 11) Student's solution was (1 X 5 // 3)
Task is (4 + 6 X 11) Student's solution was (1 X 6 // 4)
Task is (4 + 5 X 6) Student's solution was (1 X -5 // 4)
Task is (5 + 2 X 8) Student's solution was (1 X 8 // 2)

figura 3a. Somewhat erratic protocol: 3 responses conform to
M 4 N X - P M X N (student AB7).
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Mute L. SUMAC/ 01 mAlat as mAlatmlas anamuniattd in CACADI MASPLANIMU.Sets 1 to 6. give "parsing" mal-rules and 7 -9 additional manipulative mal-rules, andmal-rule 0 represents ¶ common factor'.

la. liell*N X

lb. N X

2. M + N X

3. M 6 X N

>

)

M X M
), N X * N
ea M*X*N+ X

M * X

qb M 40 N * X
> M N * X

us M+N*N> MX11
3, (M + N) X

4 . M X N'P i X M

6. MXNX*P > p

6 . M X N * P M X Nms MXP

7. M X N as X N

. M X N lb X (N/F)/M
3. X N/(M/F)

9 . M *X+ Pw ma MX*M P

Note these rules could have been specified in exactly the same format as that used inFigures la&lb; the current form his been used for brevity. However, in that earlier
notation rules lb and 9 above would become:

CONDITION ACTION
(lhs M X rhs) Ohs M+ X rhs)
(lhs M 4 N X P> rhs) (1h$14*X+MPrhs)

where lhs & rhs are general patterns.
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Ei4uCit
Prot,Col for a student who has a number of "Alternative Methods".

Student A61? op task-set 6.

a) The task given was: 2 X + 3 9

Student writes 1) 2X 9 - 3
2) X 3

Page 32

Interviewer writes X 9 3 + 2
Interviewer: Could you say whether your step 1) above or what I've just written iscorrect.

Student says he really could not.

b) The task given was: 2 X 4 16

Student writes 1) 2X 16 - 4
2) 2X 12
3) X 6

Interviewer writes X 16 - 4 - 2
Interviewer: Could you say whether your stop 1) above or what I've just written 1:correct.

Student says his 1) probably is.

Interviewer: Can you say why?

Student: I'm afraid not.

Interviewer: Now look back at the last example. there I suggested a slightly different
method there. Would that be possible here?

Student: That's right, it would.

Interviewer: Which of these do you think is correct?

Student: Really not sure. I often have a lot of methods to choose between, whichmakes it pretty confusing. I sometimes have as many as 6 or 6.

(And so this conversation continues, After this point the student voluntarily offers 2
or 3 solutions to each task, as in the next task.]

c) The task given was 4 X 2 X + 6

Student writes 1) X 2 4 G
X 4

Then suggests the foliowing reworking:

1) 4X 2X 6
2) 4X 8X
Then Quits.

Interviewer: Which solution do you think is right?

Student: Oh, I'm not really sure.

Interviewer; If you were a betting man, which would you put your money on?

Student: Probably the first.
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Liza/
Three examples of very consistently used MAL-RULES.

1) Student A611 on task-set 7.
a) The task given was: 4 2 16

Student writes 1) 8X 16
2) X 2.6666

b) The task given was: 2 + 4 X 14

Student writes 1) 8 X 14
2) X 2,333

1.

c) The task given was: 3 4 6 X 11

Student writes 1) 8 X 11
(and is told she can leave it in that form)

d) The task given was: 5 - 3 X 11

Student writes 1) 2 X 11

(and is told she can leave it in that form)

11) Student A817 on task-set
a) The task given was: 2 X + 4 X 12

Student writes 1) X X 12 - 2 4
2) X *0 2 6
3) X ROOT 6

0) The task given was: 2 X 3 X 10

Student writes 1) X X 10 2 3
2) X e 2 6

(and is told he can leave it in that form)
c) The task given was: 2 X - 3 X 10

Student writes 1) X X 10 2 3
2) X se 2 11

(and is told he can leave it in that form)

III) Student A818 on task-sets 5, 6, 7 and 8.
a) The task given was: 2 X + 3 X 10

Student writes 1) 2 X 10 2 - 3
2) 2 X 6

'3) X 2.6
b) Tho task given was: 3 X + 6 X 24

Student writes 1) X + X 24 - 3 - 5
2) 2 X 18
3) X 8

c) The task given was: 3 X + 4 X + 6 X * 24

Student writes 1) X + X + X 24 - 3 - 4 - 6
2) 3 X 12
3) X 4

d) The task given was: 2 X + 4 20

Student writes 1) X 20 - 2 - 4
2) X 14

BEST COPY
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A. .

e) the task given was: 3

Student writes

f) The task given was: 4

, Student writes

The task given was: 6

Student writes

h) The task given was: A

Student writes

9)

Student

X + 5 7

1) x 7 - 3 - 5
2) X -I

+ 3 X

1) X 14 - 3 - 4
2) X 7

+ 8 X 20

1) X

2) X
x 2

then wrote

i) The task given was: 6

Student writes

x

20 - 6 - 6
at g

X + 6

1) 2 X -4 + 2 + 6
2) 2 0 X 4
3) X 2

1) X - X 2 + 6 - 4
2),0 4
and QUITS.
3 X + 6

1) 0 4
and QUITS.
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a) The correct parse tree for the equation 6 * X 3 * X + 12

3 x

b) A "twoalevel" representation for the same equation where I
following Sundy 1982, represents a "plus bag", that is, all the
entities witb'the bag are operated on by the addition operator.

6 * X I
1 3 *X, 121
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